Current Algebra and Integrability of Principal Chiral Model on the World-sheet with General Metric

نویسنده

  • J. Klusoň
چکیده

We study the classical current algebra for principal chiral model defined on two dimensional world-sheet with general metric. We develop the Hamiltonian formalism and determine the form of the Poisson brackets between currents. Then we determine the Poisson bracket for Lax connection and we show that this Possion bracket does not depend on the world-sheet metric. We also study the Nambu-Gotto form of this model. We prove an existence of the Lax connection and determine their Poisson bracket.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY GOULD INTEGRABILITY ON ATOMS

In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...

متن کامل

On Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric

Let  be an n-dimensional Riemannian manifold, and  be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation  induces an infinitesimal homothetic transformation on .  Furthermore,  the correspondence   gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on  onto the Lie algebra of infinitesimal ...

متن کامل

On some open problems in cone metric space over Banach algebra

In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...

متن کامل

Tree Scattering Amplitudes *

The spin-4/3 fractional superstring is characterized by a chiral algebra involving a spin-4/3 current on the world-sheet in addition to the energy-momentum tensor. These currents generate physical state conditions on the fractional superstring Fock space. Scattering amplitudes of these physical states are described which satisfy both spurious state decoupling and cyclic symmetry (duality). Exam...

متن کامل

The SO(N) principal chiral field on a half-line

We investigate the integrability of the SO(N) principal chiral model on a halfline, and find that mixed Dirichlet/Neumann boundary conditions (as well as pure Dirichlet or Neumann) lead to infinitely many conserved charges classically in involution. We use an anomaly-counting method to show that at least one non-trivial example survives quantization, compare our results with the proposed reflec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007